4.6 Article

Strategies for efficient implementation of molecular markers in wheat breeding

期刊

MOLECULAR BREEDING
卷 15, 期 1, 页码 75-85

出版社

SPRINGER
DOI: 10.1007/s11032-004-2734-5

关键词

breeding strategy; marker-assisted selection (MAS); molecular marker; population genetics; population size

向作者/读者索取更多资源

Although molecular markers allow more accurate selection in early generations than conventional screens, large numbers can make selection impracticable while screening in later generations may provide little or no advantage over conventional selection techniques. Investigation of different crossing strategies and consideration of when to screen, what proportion to retain and the impacts of dominant vs. codominant marker expression revealed important choices in the design of marker-assisted selection programs that can produce large efficiency gains. Using F-2 enrichment increased the frequency of selected alleles allowing large reductions in minimum population size for recovery of target genotypes (commonly around 90%) and/or selection at a greater number of loci. Increasing homozygosity by inbreeding from F-2 to F-2:3 also reduced population size by around 90% in some crosses with smaller incremental reductions in subsequent generations. Backcrossing was found to be a useful strategy to reduce population size compared with a biparental population where one parent contributed more target alleles than the other and was complementary to F-2 enrichment and increasing homozygosity. Codominant markers removed the need for progeny testing reducing the number of individuals that had to be screened to identify a target genotype. However, although codominant markers allow target alleles to be fixed in early generations, minimum population sizes are often so large in F-2 that it is not efficient to do so at this stage. Formulae and tables for calculating genotypic frequencies and minimum population sizes are provided to allow extension to different breeding systems, numbers of target loci, and probabilities of failure. Principles outlined are applicable to implementation of markers for both quantitative trait loci (QTL) and major genes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据