4.8 Article

Influence of the carbon surface on cathode deposits in non-aqueous Li-O2 batteries

期刊

CARBON
卷 50, 期 13, 页码 4794-4803

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2012.06.003

关键词

-

向作者/读者索取更多资源

Cup-stacked carbon nanotubes (CSCNT) with different surface properties were used for the non-aqueous Li-O-2 battery cathodes, and then examined at high magnification to understand how the discharge products were deposited on the cathode. As-prepared CSCNT based cathode had many reactive edges consisting of truncated conical graphene layers. After discharge, discharge products with average particle size 50 nm covered a nanotube, resulting in a layer-like texture. On the other hand, a heat-treated CSCNT based cathode was composed of edges terminated by graphitization of several graphene layers. After discharge, the size of the products was almost the same but the products were agglomerated, forming a bulky morphology. It was, thus, found that the carbon surface structure was closely related with the morphology of the cathode deposits after discharge. First principles calculations also indicated that no terminated edges acted as preferential active sites in adsorbing and storing the reaction species. It was, therefore, concluded that the active edges of the carbon surface were indispensable for controlling the morphology of cathode deposits and improving the battery performance. (C) 2012 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据