4.8 Article

Improving the electrical conductivity of a carbon nanotube/polypropylene composite by vibration during injection-moulding

期刊

CARBON
卷 49, 期 10, 页码 3274-3283

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2011.03.054

关键词

-

资金

  1. National Natural Science Foundation of China [50873072]
  2. State Key Laboratory Special Fund

向作者/读者索取更多资源

An isotactic polypropylene/multi-wall carbon nanotube (iPP/MWCNT) composite was prepared by a vibration injection moulding technique. The effect of the vibration field on the electrical conductivity property of samples was investigated. The results show that the electrical conductivities of the samples prepared by vibration injection moulding was far higher than those of samples prepared by conventional injection moulding when the CNT concentration are above 2 wt.% and below 6 wt.%. Besides the electrical conductivity of vibration injection moulded samples are a little higher than those of the compression moulded samples. The higher conductivity was resulted from the MWCNT movement induced by the periodical shear during vibration injection moulding. The agglomerates or individual MWCNT were disentangled, stretched and oriented along the flow direction, resulting in better conducting paths thus greatly increased the electrical conductivity. The electrical conductivity increased with increasing vibration frequency. The difference in the voltage-current relationships among the samples prepared at different vibration frequencies suggests that the mechanism of electrical conductivity of iPP/MWCNT composite changed from a tunnel to an ohmic effect. Compared with conventional injection moulded samples, there was no loss of mechanical properties. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据