4.8 Article

Discriminative generation and hydrogen modulation of the Dirac-Fermi polarons at graphene edges and atomic vacancies

期刊

CARBON
卷 49, 期 11, 页码 3615-3621

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2011.04.064

关键词

-

向作者/读者索取更多资源

Using a combination of the bond order-length-strength correlation theory, the spin-polarized tight binding method, the first-principles calculations, and the atomistic photoelectron distillation experiments, we investigated the mechanisms of edge-selective generation and hydrogenated modulation of Dirac-Fermi polarons (DFPs) surrounding the atomic vacancies at a graphite surface and at the edges of graphene nanoribbons (GNR). We found that: (i) the DFPs with a high-spin density at a zigzag-GNR edge and at an atomic vacancy result from the isolation and polarization of the dangling a-bond electrons of root 3d (d is the C-C bond length) distance along the edge by the locally and densely entrapped bonding electrons; (ii) along an armchair-GNR edge and a reconstructed-zigzag-GNR edge, however, the formation of quasi-triple-bond between the nearest edge atoms of d distance prevents the DFPs from generation; and (iii) hydrogenation reduces the spin density substantially and turns the asymmetric dumb-bell-like density into the spherical-like p(z) density. A further C 1s photoelectron spectroscopic purification has confirmed that the generation of the DFPs is associated with two extra peaks of energy states located at the bottom and the top edge of the C 1s band. (C) 2011 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据