4.8 Article

Increased discharge capacity of a Li-air activated carbon cathode produced by preventing carbon surface passivation

期刊

CARBON
卷 49, 期 4, 页码 1266-1271

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2010.11.045

关键词

-

资金

  1. US Department of Energy [DEAC02-98CH10886]

向作者/读者索取更多资源

A significant discharge capacity increase (larger than 3 times) for the gas-diffusion-electrode (GDE) used in Li-air cells was demonstrated through modification of the carbon surface with long-chain hydrophobic molecules. The capacity loss of the Li-air activated carbon cathode was found to be caused by the formation of undesired surface passivation. The mechanism of such passivation was identified as the formation of dense Li oxide films directly on the surface of the carbon during the oxygen reduction reaction. Such dense layers of Li oxide are here identified as the root cause of the undesired passivation, which blocks electrochemical reactions, increases the impedance and drops the discharge voltage rapidly. This investigation reveals that the capacity for the gas-diffusion-electrode can be substantially increased, if the activated carbon is modified by attaching long-chain hydrophobic molecules onto the surface. The carbon surface modification significantly delays the formation of the dense Li oxide layers. Therefore, the discharge capacity for the GDE is substantially increased. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据