4.8 Article

Compressive properties and fracture behavior of ceramic fiber-reinforced carbon aerogel under quasi-static and dynamic loading

期刊

CARBON
卷 49, 期 5, 页码 1542-1549

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2010.12.021

关键词

-

向作者/读者索取更多资源

The quasi-static and dynamic compressive properties of a ceramic fiber-reinforced carbon (CFRC) aerogel were investigated using a universal test machine and a split Hopkinson pressure bar. The fracture surface of the CFRC aerogel was studied by scanning electron microscopy. Results show that the compressive behavior of CFRC aerogel exhibits a significant strain rate strengthening effect. The quasi-static failure strain is higher than the dynamic failure strain. Under quasi-static compressive loading, the carbon aerogel matrix breaks into small pieces at a strain of 0.75 and fibers separate from the matrix. The deformation of the fibers is not obvious, indicating that fibers suffer little stress. Under dynamic compressive loading, the aerogel matrix shatters into fragments at a strain of 0.62 and shows a bursting phenomenon. The high speed compression of gas in the aerogel results in an increase of the internal stress. Fibers bend, break and separate from the matrix, indicating that fibers carry partially the applied loading. The carbon nanoparticles are squeezed closer with nearly no voids remaining after both quasi-static and dynamic compression. The increase of the internal stress and the fracture of fibers lead to strain rate strengthening and earlier fracture of the CFRC aerogel at high strain rates. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据