4.5 Article

Application of a solidification mathematical model and a genetic algorithm in the optimization of strand thermal profile along the continuous casting of steel

期刊

MATERIALS AND MANUFACTURING PROCESSES
卷 20, 期 3, 页码 421-434

出版社

TAYLOR & FRANCIS INC
DOI: 10.1081/AMP-200053451

关键词

continuous casting of steel; genetic algorithm; mathematical modeling; optimization methods

向作者/读者索取更多资源

This work presents an optimization method based on a genetic algorithm applied to continuous casting process. A simple genetic algorithm was developed, which works linked to a mathematical model permitting the determination of optimum values for the water flow rates in the secondary cooling zones. First, experimental data (industrial) were compared with simulated results obtained by the solidification mathematical model, to determine the metal/cooling heat transfer coefficients along the machine by the inverse heat conduction problem method. The industrial data concerning surface strand temperature were obtained by using infrared pyrometers along a continuous caster machine during casting of both SAE 1007 and 1025 steels. In a second step, these results were used by a numerical code based on a genetic algorithm for determining optimum settings of water flow rates in the different sprays zones, which are conducive to the best quality of the solidified strand. The simulations were carried out by analyzing the solidification process during continuous casting to attain metallurgical restrictions concerning the reheating of strand surface temperature and metallurgical length.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据