4.8 Article

Fast and reversible surface redox reaction of graphene-MnO2 composites as supercapacitor electrodes

期刊

CARBON
卷 48, 期 13, 页码 3825-3833

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.carbon.2010.06.047

关键词

-

资金

  1. Chinese Ministry of Education [106011]
  2. Fundamental Research funds for the Central Universities [HEUCF101006]
  3. Fundamental Research Foundation of Harbin Engineering University [HEUFT07094]

向作者/读者索取更多资源

We present a quick and easy method to synthesize graphene-MnO2 composites through the self-limiting deposition of nanoscale MnO2 on the surface of graphene under microwave irradiation. These nanostructured graphene-MnO2 hybrid materials are used for investigation of electrochemical behaviors. Graphene-MnO2 composite (78 wt.% MnO2) displays the specific capacitance as high as 310 F g(-1) at 2 mV s(-1) (even 228 F g(-1) at 500 mV s(-1)), which is almost three times higher than that of pure graphene (104 F g(-1)) and birnessite-type MnO2 (103 F g(-1)). Interestingly, the capacitance retention ratio is highly kept over a wide range of scan rates (88% at 100 mV s(-1) and 74% at 500 mV s(-1)). The improved high-rate electrochemical performance may be attributed to the increased electrode conductivity in the presence of graphene network, the increased effective interfacial area between MnO2 and the electrolyte, as well as the contact area between MnO2 and graphene. (C) 2010 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据