4.5 Article

On the effect of crystallographic orientation on ductile material removal in silicon

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.precisioneng.2004.05.004

关键词

diamond turning; silicon; critical chip thickness; crystallographic orientation

向作者/读者索取更多资源

In this work the critical chip thickness for ductile regime machining of monocrystalline, electronic-grade silicon is measured as a function of crystallographic orientation on the (0 0 1) cubic face. A single-point diamond flycutting setup allows sub-micrometer, non-overlapping cuts in any direction while minimizing tool track length and sensitivity to workpiece flatness. Cutting tests are performed using chemically faceted, -45degrees rake angle diamond tools at cutting speeds of 1400 and 5600 mm/s. Inspection of the machined silicon workpiece using optical microscopy allows calculation of the critical chip thickness as a function of crystallographic orientation for different cutting conditions and workpiece orientations. Results show that the critical chip thickness in silicon for ductile material removal reaches a maximum of 120 nm in the [1 0 0] direction and a minimum of 40 nm in the [1 1 0] direction. These results agree with the more qualitative results of many previous efforts. (C) 2004 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据