4.5 Article

The effect of sodium chloride on molecular mobility in amorphous sucrose detected by phosphorescence from the triplet probe erythrosin B

期刊

CARBOHYDRATE RESEARCH
卷 343, 期 2, 页码 350-363

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carres.2007.11.005

关键词

sucrose; NaCl; amorphous solid; molecular mobility; phosphorescence; erythrosin B

向作者/读者索取更多资源

Phosphorescence from the triplet probe erythrosin B provides spectroscopic characteristics such as emission energy and lifetime that are specifically sensitive to molecular mobility of the local environment. This study used phosphorescence of erythrosin B to investigate how variation in NaCl content modulated the mobility of the amorphous sucrose matrix over the temperature range from 5 to 100 degrees C. Addition of NaCl increased the emission energy and the energy difference with excitation at the absorption maximum and the red edge, and increased the lifetime by reducing the non-radiative decay rate in the glass as well as in the undercooled liquid in a concentration dependent manner, indicating that NaCl decreased the matrix molecular mobility. Emission energy and lifetime increased with increasing NaCl content up to a maximum at NaCl/sucrose mole ratio of similar to 0.5; above 0.5 mole ratio, the effect of NaCl was less significant and appeared to be opposed by increasing plasticization by residual water. Changes in the width of the distribution of the emission energy and lifetime and variation in the lifetime with excitation and emission wavelength indicated that NaCl increased the spectral heterogeneity and thus increased the extent of dynamic site heterogeneity. These results are consistent with a physical model in which sodium and chloride ions interact with sucrose OH by ion-dipole interactions, forming clusters of less mobile molecules within the matrix. (c) 2007 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据