4.7 Article

Regeneration of cellulose dissolved in ionic liquid using laser-heated melt-electrospinning

期刊

CARBOHYDRATE POLYMERS
卷 201, 期 -, 页码 182-188

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.carbpol.2018.08.062

关键词

Cellulose; Ionic liquid; Gelation; Melt-electrospinning

向作者/读者索取更多资源

A green and highly efficient route was proposed to fabricate ultrafine cellulose fibers. The processing steps include cellulose dissolution, gel preparation, melt-electrospinning and fiber coagulation. High DP cellulose can be easily dissolved in 1-butyl-3-methylimidazolium chloride (BmimCl) when the blend was stirred at 110 degrees C for 2 h. The maximum solubility can reach up to 16.7 wt%. A homogeneous ternary cellulose/BmimCl/ethanol or cellulose/BmimCl/water gel was made by the methods of crystallization and casting for the purpose of fixing the shape of the cellulose/BmimCl solution. After laser-heating and electrospinning, multiple jets were ejected from the gel tip and then frozen on a super cold target. Pure cellulose fibers without beads and blocks were achieved after coagulation. The results of WAXD and FTIR indicated that the regenerated cellulose fibers were amorphous and chemically stable. More importantly, this approach can be applied to other polysaccharides for the preparation of ultrafine fibers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据