3.8 Article

Physical Interpretation and Mathematical Properties of the Stress-DLM Formulation for Rigid Particulate Flows

出版社

TAYLOR & FRANCIS INC
DOI: 10.1080/15502280590891618

关键词

Direct Numerical Simulation; Distributed Lagrange Multiplier; Rigid Particulate Flow

资金

  1. NSF through CAREER [CTS-0134546]
  2. Northwestern University

向作者/读者索取更多资源

Patankar et al. (2000) presented a new formulation of the Lagrange-multiplier-based fictitious-domain method (DLM) for the direct numerical simulation of rigid particulate flows. The idea is to assume that the entire fluid-particle domain is some fluid and then to constrain the particle domain tomove with a rigid motion by setting the deformation-rate tensor equal to zero. The constraint gives a vector Lagrange multiplier field in the particle domain. This approach is usually referred to as the stress-DLM formulation. We first discuss a physical interpretation of this formulation where we see that, with an appropriate choice of the constraint equations, the vector Lagrange multiplier field is in fact the displacement field of a linear elastic body. We theoretically investigate the existence and uniqueness properties of the stress-DLM formulation by considering a model problem. We find that the velocity and the Lagrange multiplier can be represented by an equal-order interpolation scheme in a finite element formulation. This is unlike the incompressibility constraint where equal order interpolation of pressure and velocity can lead to spurious modes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据