4.3 Article

How hierarchical control self-organizes in artificial adaptive systems

期刊

ADAPTIVE BEHAVIOR
卷 13, 期 3, 页码 211-225

出版社

SAGE PUBLICATIONS LTD
DOI: 10.1177/105971230501300303

关键词

neural network; hierarchy; self-organization; initial sensitivity; genetic algorithm; evolutionary robotics

向作者/读者索取更多资源

Diverse, complex, and adaptive animal behaviors are achieved by organizing hierarchically structured controllers in motor systems. The levels of control progress from simple spinal reflexes and central pattern generators through to executive cognitive control in the frontal cortex. Various types of hierarchical control structures have been introduced and shown to be effective in past artificial agent models, but few studies have shown how such structures can self-organize. This study describes how such hierarchical control may evolve in a simple recurrent neural network model implemented in a mobile robot. Topological constraints on information flow are found to improve system performance by decreasing interference between different parts of the network. One part becomes responsible for generating lower behavior primitives while another part evolves top-down sequencing of the primitives for achieving global goals. Fast and slow neuronal response dynamics are automatically generated in specific neurons of the lower and the higher levels, respectively. A hierarchical neural network is shown to outperform a comparable single-level network in controlling a mobile robot.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据