4.7 Article

A synthetic chaperone corrects the trafficking defect and disease phenotype in a protein misfolding disorder

期刊

FASEB JOURNAL
卷 19, 期 1, 页码 12-18

出版社

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.04-2375com

关键词

chemical chaperone; protein misfolding disease; Fabry disease; alpha-galactosidase A; lysosomes

向作者/读者索取更多资源

Mutations in proteins that induce misfolding and proteasomal degradation are common causes of inherited diseases. Fabry disease is a lysosomal storage disorder caused by a deficiency of alpha-galactosidase A activity in lysosomes resulting in an accumulation of glycosphingolipid globotriosylceramide (Gb3). Some classical Fabry hemizygotes and all cardiac variants have residual alpha-galactosidase A activity, but the mutant enzymes are unstable. Such mutant enzymes appear to be misfolded, recognized by the ER protein quality control, and degraded before sorting into lysosomes. Hence, correction of the trafficking defect of mutant but catalytically active enzyme into lysosomes would be beneficial for treatment of the disease. Here we show that a nontoxic competitive inhibitor (1-deoxygalactonojirimycin) of alpha-galactosidase A functions as a chemical chaperone by releasing ER-retained mutant enzyme from BiP. The treatment with subinhibitory doses resulted in efficient, long-term lysosomal trafficking of the ER-retained mutant alpha-galactosidase A. Successful clearance of lysosomal Gb3 storage and a near-normal lysosomal phenotype was achieved in human Fabry fibroblasts harboring different types of mutations. Small molecule chemical chaperones will be therapeutically useful for various lysosomal storage disorders as well as for other genetic metabolic disorders caused by mutant but nonetheless catalytically active enzymes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据