4.7 Article

Dynamic network modeling of two-phase drainage in porous media

期刊

PHYSICAL REVIEW E
卷 71, 期 1, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevE.71.016308

关键词

-

向作者/读者索取更多资源

We present a dynamic network model for modeling two-phase flow. We account for wetting layer flow, meniscus oscillation, and the dynamics of snapoff. Interfaces are tracked through pore elements using a modified Poiseuille equation for the equivalent hydraulic resistance of the fluids between the pore element centers. The model is used to investigate the effects of capillary number and viscosity ratio on displacement patterns and fractional flow in primary drainage. We show that the amount of snapoff increases with increasing capillary number and decreasing wetting phase viscosity. For capillary numbers lower than approximately 10(-5), the pore-scale fluid distribution and fractional flow are similar to those obtained using a quasistatic model that ignores viscous forces. The contribution of oil transport from ganglia, formed by snapoff, is negligible except for very large capillary numbers, greater than around 0.1.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据