4.7 Article

Toward a robust and general molecular simulation method for computing solid-liquid coexistence

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 122, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1823371

关键词

-

向作者/读者索取更多资源

A rigorous and generally applicable method for computing solid-liquid coexistence is presented. The method overcomes some of the technical difficulties associated with other solid-liquid simulation procedures and can be implemented within either a molecular dynamics or Monte Carlo framework. The method consists of three steps: First, relative Gibbs free energy curves are created for the solid and liquid phases using histogram reweighting. Next, the free energy difference between the solid and liquid phases is evaluated at a single state point by integrating along a pseudosupercritical transformation path that connects the two phases. Using this result, the solid and liquid free energy curves are referenced to a common point, allowing a single coexistence point to be determined. Finally, Gibbs-Duhem integration is used to determine the full coexistence curve. To evaluate its utility, this method is applied to the Lennard-Jones and NaCl systems. Results for solid-liquid coexistence agree with previous calculations for these systems. In addition, it is shown that the NaCl model does not correctly describe solid-liquid coexistence at high pressures. An analysis of the accuracy of the method indicates that the results are most sensitive to the transformation free energy calculation. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据