4.6 Article

Vertically segregated hybrid blends for photovoltaic devices with improved efficiency

期刊

JOURNAL OF APPLIED PHYSICS
卷 97, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1804613

关键词

-

向作者/读者索取更多资源

Solution-processed photovoltaic devices based on blends of conjugated polymers and inorganic semiconductor tetrapods show high efficiencies due to the good electron transport perpendicular to the plane of the film. Here, we show that by using a high-boiling-point solvent, 1,2,4-trichlorobenzene, instead of chloroform for spin-coating, we can typically obtain a threefold increase in solar power conversion efficiency in devices based on CdSe tetrapods and the poly(p-phenylenvinylene) derivative OC1C10-PPV. The optimized devices show AM1.5 solar power conversion efficiencies of typically 2.1% with some devices as high as 2.8%. The results can be explained by the occurrence of vertical phase separation which leads to an optimal structure for charge collection. Evidence for this structure is obtained by environmental scanning electron microscopy, photocurrent action spectra measurements, time-resolved photoluminescence, and spectroscopic measurements of exciton dissociation and charge-carrier recombination. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据