4.6 Article

Gap-Townes solitons and localized excitations in low-dimensional Bose-Einstein condensates in optical lattices

期刊

PHYSICAL REVIEW A
卷 72, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.033617

关键词

-

向作者/读者索取更多资源

We discuss localized ground states of Bose-Einstein condensates (BEC's) in optical lattices with attractive and repulsive three-body interactions in the framework of a quintic nonlinear Schrodinger equation which extends the Gross-Pitaevskii equation to the one-dimensional case. We use both a variational method and a self-consistent approach to show the existence of unstable localized excitations which are similar to Townes solitons of the cubic nonlinear Schrodinger equation in two dimensions. These solutions are shown to be located in the forbidden zones of the band structure, very close to the band edges, separating decaying states from stable localized ones (gap solitons) fully characterizing their delocalizing transition. In this context the usual gap solitons appear as a mechanism for arresting the collapse in low-dimensional BEC's in optical lattices with an attractive real three-body interaction. The influence of the imaginary part of the three-body interaction, leading to dissipative effects in gap solitons, and the effect of atoms feeding from the thermal cloud are also discussed. These results may be of interest for both BEC's in atomic chips and Tonks-Girardeau gas in optical lattices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据