4.6 Article

Exact soliton solutions and nonlinear modulation instability in spinor Bose-Einstein condensates

期刊

PHYSICAL REVIEW A
卷 72, 期 3, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.72.033611

关键词

-

向作者/读者索取更多资源

We find one-, two-, and three-component solitons of the polar and ferromagnetic (FM) types in the general (nonintegrable) model of a spinor (three-component) model of the Bose-Einstein condensate, based on a system of three nonlinearly coupled Gross-Pitaevskii equations. The stability of the solitons is studied by means of direct simulations and, in a part, analytically, using linearized equations for small perturbations. Global stability of the solitons is considered by means of an energy comparison. As a result, ground-state and metastable soliton states of the FM and polar types are identified. For the special integrable version of the model, we develop the Darboux transformation (DT). As an application of the DT, analytical solutions are obtained that display full nonlinear evolution of the modulational instability of a continuous-wave state seeded by a small spatially periodic perturbation. Additionally, by dint of direct simulations, we demonstrate that solitons of both the polar and FM types, found in the integrable system, are structurally stable; i.e., they are robust under random changes of the relevant nonlinear coefficient in time.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据