4.5 Article

Sprouty4 deficiency potentiates Ras-independent angiogenic signals and tumor growth

期刊

CANCER SCIENCE
卷 100, 期 9, 页码 1648-1654

出版社

WILEY
DOI: 10.1111/j.1349-7006.2009.01214.x

关键词

-

类别

资金

  1. Ministry of Education, Culture, Sports, Science and Technology of Japan
  2. National Institute of Biomedical Innovation (NIBIO)
  3. Naito Foundation
  4. Astellas Foundation for Research

向作者/读者索取更多资源

Sprouty proteins have been shown to negatively regulate a variety of receptor tyrosine kinase (RTK) signaling pathways and are considered to be tumor suppressor proteins. The pathophysiological functions of Sproutys in vivo remain to be investigated. In this study, we examined the physiological function of Sprouty4 as an angiogenic regulator, using Sprouty4 knockout (KO) mice and cells. We found that transplanted tumor cells grow much faster in Sprouty4 KO mice than in wild type (WT) mice, which we associate with enhanced neovascularization in the tumors transplanted into Sprouty4 KO mice. Moreover, vascular endothelial growth factor (VEGF)-A-induced angiogenesis and vascular permeability in vivo were enhanced in Sprouty4 KO mice compared with WT mice. Ex vivo angiogenesis, which we induced by VEGF-A, basic fibroblast growth factor (bFGF), and sphingosine-1-phosphate (S1P), was also enhanced in the aortas of Sprouty4 KO mice. We demonstrated that Sprouty4 suppresses Ras-independent VEGF-A and S1P signaling, while it does not affect Ras-dependent VEGF-C signaling. These data indicate that Sprouty4 selectively suppresses Ras-independent angiogenic factor signals and is an important negative regulator of pathophysiological angiogenesis. (Cancer Sci 2009; 100: 1648-1654).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据