4.5 Article

Involvement of Pin1 induction in epithelial-mesenchymal transition of tamoxifen-resistant breast cancer cells

期刊

CANCER SCIENCE
卷 100, 期 10, 页码 1834-1841

出版社

WILEY
DOI: 10.1111/j.1349-7006.2009.01260.x

关键词

-

类别

资金

  1. Korea government (MEST) through the Research Center for Resistant Cells [R13-2003-009]

向作者/读者索取更多资源

Acquisition of resistance to tamoxifen is a critical therapeutic problem in breast cancer patients. Epithelial-mesenchymal transition (EMT), where cells undergo a developmental switch from a polarized epithelial phenotype to a highly motile mesenchymal phenotype, is associated with invasion and motility of cancer cells. Here, we found that tamoxifen-resistant (TAMR)-MCF-7 cells had undergone EMT, as evidenced by mesenchymal-like cell shape, downregulation of basal E-cadherin expression, and overexpression of N-cadherin and vimentin, as well as increased Snail transcriptional activity and protein expression. Given the roles of glycogen synthase kinase (GSK)-3 beta and nuclear factor (NF)-kappa B in Snail-mediated E-cadherin deregulation during EMT, we examined the role of these signaling pathways in the EMT of TAMR-MCF-7 cells. Both Ser9-phosphorylated GSK-3 beta (inactive form) and NF-kappa B reporter activity were increased in TAMR-MCF-7 cells, as was activation of the phosphatase and tensin homolog depleted on chromosome ten (PTEN)-phosphoinositide 3 (PI3)-kinase-Akt pathway. Pin1, a peptidyl-prolyl isomerase, was overexpressed in TAMR-MCF-7 cells, and Snail transcription and the expression of EMT markers could be decreased by Pin1 siRNA treatment. These results imply that Pin1 overexpression in TAMR-MCF-7 cells is involved in the EMT process via PTEN-PI3-kinase-Akt-GSK-3 beta and/or GSK-3 beta-NF-kappa B-dependent Snail activation, and suggest the potential involvement of Pin1 in EMT during breast cancer development. (Cancer Sci 2009; 100: 1834-1841).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据