4.7 Article

Pancreatic beta cell senescence contributes to the pathogenesis of type 2 diabetes in high-fat diet-induced diabetic mice

期刊

DIABETOLOGIA
卷 48, 期 1, 页码 58-67

出版社

SPRINGER
DOI: 10.1007/s00125-004-1605-2

关键词

cellular proliferation; cellular senescence; high-fat diet; pancreatic beta cell; type 2 diabetes

向作者/读者索取更多资源

Aims/hypothesis: During the pathogenesis of type 2 diabetes insulin resistance causes compensatory proliferation of beta cells. As beta cells have a limited replication potential, this compensatory proliferation might accelerate cellular senescence and lead to diabetes. We examined the cellular senescence of beta cells after proliferation during lipoglucotoxicity. Methods: Senescence-associated markers in beta cells were examined in nutrient-induced diabetic C57BL/6J mice that were fed a high-fat diet. After 4 and 12 months of the high-fat diet, intraperitoneal glucose tolerance tests (IPGTTs) and histochemical analyses of Ki-67, p38, senescence-associated beta-galactosidase, and beta cell mass were performed. Results: At 4 months, the AUC for plasma insulin levels during the IPGTT (AUC(insulin)) was higher, beta cell mass was 3.1-fold greater, and the proliferation of beta cells was 2.2-fold higher than in the control group. However, at 12 months, AUC(insulin) declined, the frequency of Ki-67positive beta cells decreased to one-third that of the control group, and the senescence-associated, beta-galactosidase-positive area increased to 4.7-fold that of the control group. Moreover, small amounts of p38, which is induced by oxidative stress and mediates cellular senescence, were found in beta cells from the high-fat diet group, but not in beta cells from the control group. Furthermore, the senescence-associated, beta-galactosidase-positive area in the high-fat diet group had a highly significant negative correlation with AUC(insulin) ( r=- 0.852, p< 0.01). Conclusions/interpretation: Beta cell senescence occurred in diet-induced type 2 diabetes and led to insufficient insulin release. These findings suggest that cellular senescence contributes to the pathogenesis of diet-induced diabetes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据