4.8 Article

Mammalian enzymes for preventing transcriptional errors caused by oxidative damage

期刊

NUCLEIC ACIDS RESEARCH
卷 33, 期 12, 页码 3779-3784

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gki682

关键词

-

向作者/读者索取更多资源

8-Oxo-7,8-dihydroguanine (8-oxoGua) is produced in cells by reactive oxygen species normally formed during cellular metabolic processes. This oxidized base can pair with both adenine and cytosine, and thus the existence of this base in messenger RNA would cause translational errors. The MutT protein of Escherichia coli degrades 8-oxoGua-containing ribonucleoside di- and triphosphates to the monophosphate, thereby preventing the misincorporation of 8-oxoGua into RNA. Here, we show that for human the MutT-related proteins, NUDT5 and MTH1 have the ability to prevent translational errors caused by oxidative damage. The increase in the production of erroneous proteins by oxidative damage is 28-fold over the wild-type cells in E.coli mutT deficient cells. By the expression of NUDT5 or MTH1 in the cells, it is reduced to 1.4- or 1.2-fold, respectively. NUDT5 and MTH1 hydrolyze 8-oxoGDP to 8-oxoGMP with V-max/K-m values of 1.3 x 10(-3) and 1.7 x 10(-3), respectively, values which are considerably higher than those for its normal counterpart, GDP (0.1-0.5 x 10(-3)). MTH1, but not NUDT5, possesses an additional activity to degrade 8-oxoGTP to the monophosphate. These results indicate that the elimination of 8-oxoGua-containing ribonucleotides from the precursor pool is important to ensure accurate protein synthesis and that both NUDT5 and MTH1 are involved in this process in human cells.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据