4.8 Article

Comparison of the thermodynamic properties of particulate and monolithic columns of molecularly imprinted copolymers

期刊

ANALYTICAL CHEMISTRY
卷 77, 期 1, 页码 93-102

出版社

AMER CHEMICAL SOC
DOI: 10.1021/ac0401218

关键词

-

向作者/读者索取更多资源

A variety of polymerization techniques can be used to prepare molecularly imprinted copolymers (MIPs) for the purpose of the separation of enantiomers by HPLC. Unfortunately, the lack of thermodynamic and kinetic data characterizing the imprinted polymers prepared by these different techniques prevents the rational choice of the one most suited for a specific application. We investigated and compared the thermodynamic properties of copolymers imprinted for Fmoc-L-tryptophan and prepared by two different methods. The first was an in situ polymerization method that gives monolithic columns (monolithic MIPs), the second, a traditional method giving bulk MIPs. Examination of the thermodynamic properties on these two different MIPs showed that three types of binding sites coexist on their surface. The highest energy sites adsorb only the imprinted molecule or template. Most of the intermediate energy sites adsorb both the template and its antipode, although part of them may adsorb only the template. Finally, the lowest energy sites provide nonselective interactions of both the template and its antipode. On the nonimprinted copolymer, there are only two types of sites. The high-energy sites have a slightly lower energy that the intermediate sites of the MIPs, and the low-energy sites have properties close to those of the lowest energy sites on the MIPs. The monolithic MIPs have fewer nonselective sites than the bulk MIPs. However, the polar porogen that is needed to prepare the monolithic MIPs negatively affects the enantiomeric separation.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据