4.3 Article Proceedings Paper

Exploring long-time response to radiation damage in MgO

出版社

ELSEVIER SCIENCE BV
DOI: 10.1016/j.nimb.2004.10.055

关键词

MgO; radiation damage; molecular dynamics; accelerated molecular dynamics; temperature accelerated dynamics; molecular statics; density functional theory; interstitial clusters; defect mobility

向作者/读者索取更多资源

Using a variety of computational modeling and simulation methods, we examine the production and long-time evolution of damage created in irradiated MgO. We find that the damage produced in low energy (order 1 keV) collision cascades typically consists of point defects and small defect clusters. Over long times, interstitials annihilate with vacancies and aggregate with other interstitials, forming larger clusters that exhibit surprising behavior. For example, a sixatom interstitial cluster is found to have extremely high mobility. The implications of highly-mobile large clusters are explored via a rate theory model and comparison to other materials. We conclude that successful modeling of radiation damage evolution in MgO requires explicit treatment of large interstitial clusters. (C) 2004 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.3
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据