4.8 Article

DNA-tension dependence of restriction enzyme activity reveals mechanochemical properties of the reaction pathway

期刊

NUCLEIC ACIDS RESEARCH
卷 33, 期 8, 页码 2676-2684

出版社

OXFORD UNIV PRESS
DOI: 10.1093/nar/gki565

关键词

-

向作者/读者索取更多资源

Type II restriction endonucleases protect bacteria against phage infections by cleaving recognition sites on foreign double-stranded DNA (dsDNA) with extraordinary specificity. This capability arises primarily from large conformational changes in enzyme and/or DNA upon target sequence recognition. In order to elucidate the connection between the mechanics and the chemistry of DNA recognition and cleavage, we used a single-molecule approach to measure rate changes in the reaction pathway of EcoRV and BamHI as a function of DNA tension. We show that the induced-fit rate of EcoRV is strongly reduced by such tension. In contrast, BamHI is found to be insensitive, providing evidence that both substrate binding and hydrolysis are not influenced by this force. Based on these results, we propose a mechanochemical model of induced-fit reactions on DNA, allowing determination of induced-fit rates and DNA bend angles. Finally, for both enzymes a strongly decreased association rate is obtained on stretched DNA, presumably due to the absence of intradomain dissociation/re-association between non-specific sites (jumping). The obtained results should apply to many other DNA-associated proteins.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据