4.5 Article

Lesion-induced differential expression and cell association of neurocan, brevican, versican V1 and V2 in the mouse dorsal root entry zone

期刊

NEUROSCIENCE
卷 133, 期 3, 页码 749-762

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.neuroscience.2005.03.005

关键词

CNS injury; glial cells; nerve regeneration; axonal growth; proteoglycans

向作者/读者索取更多资源

Lack of regeneration in the CNS has been attributed to many causes, including the presence of inhibitory molecules such as chondroitin sulfate proteoglycans (CSPGs). However, little is known about the contribution of CSPGs to regeneration failure in vivo, in particular at the dorsal root entry zone (DREZ), a unique CNS region that blocks regeneration of sensory fibers following dorsal root injury without glial scar formation. The goal of the present study was to evaluate the presence, regulation, and cellular identity of the proteoglycans Brevican, Neurocan, Versican V1 and Versican V2 in the DREZ using CSPG-specific antibodies and nucleic acid probes. Brevican and Versican V2 synthesized before the lesion were still present at high levels in the extracellular matrix of the DREZ several weeks after injury. In addition, Brevican was transiently expressed by reactive oligodendrocytes, and by a subset of astrocytes thereafter. Versican V2 mRNA appeared in NG2-positive cells with the morphology of oligodendrocyte precursor cells. Neurocan and Versican V1 levels were low before injury, and appeared in nestin-positive astrocytes and in NG2-positive cells, respectively, following lesion. Versican V1, but not V2, was also transiently increased in the peripheral dorsal root post-lesion. This is the first thorough description of the expression and cell association of individual proteoglycans following dorsal root lesion. It demonstrates that the proteoglycans Brevican, Neurocan, Versican V1, and Versican V2 are abundant in the DREZ at the time regenerating sensory fibers reach the PNS/CNS border and may therefore participate in growth-inhibition in this region. (c) 2005 IBRO. Published by Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据