4.7 Article

An alpha-Tropomyosin mutation alters dimer preference in nemaline myopathy

期刊

ANNALS OF NEUROLOGY
卷 57, 期 1, 页码 42-49

出版社

WILEY
DOI: 10.1002/ana.20305

关键词

-

向作者/读者索取更多资源

Nemaline myopathy is a human neuromuscular disorder associated with muscle weakness, Z-line accumulations (rods), and myofibrillar disorganization. Disease-causing mutations have been identified in genes encoding muscle thin filament proteins: actin, nebulin, slow troponin T, betaTropomyosin, anti alphaTropomyosin(slow). Skeletal muscle expresses three tropomyosin (Tm) isoforms from separate genes: alphaTm(fast)(alphaTm, TPM1), betaTm (TPM2), and alphaTm(slow) (gammaTm, TPM3). In this article, we show that the level of betaTm, but not alphaTm(fast) protein, is reduced in human patients with mutations in alphaTm(slow) and in a transgenic mouse model of alphaTm(slow)(Met9Arg) nemaline myopathy. A postnatal time course of Tm expression in muscles of the mice indicated that the onset of alphaTm(slow)(Met9Arg) expression coincides with the decline of betaTm. Reduction of betaTm levels is independent of the degree of pathology (rods) within a muscle and is detected before the onset of muscle weakness. Thus, reduction in the level of betaTm represents an early clinical diagnostic marker for alphaTm(slow)-based mutations. Examinations of tropomyosin dimer formation using either recombinant proteins or sarcomeric extracts show that the mutation reduces the formation of the preferred alpha/beta heterodimer. We suggest this perturbation of tropomyosin isoform levels and dimer preference alters sarcomeric thin filament dynamics and contributes to muscle weakness in nemaline myopathy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据