4.8 Article

Characterization of protein release from photocrosslinkable hyaluronic acid-polyethylene glycol hydrogel tissue engineering scaffolds

期刊

BIOMATERIALS
卷 26, 期 2, 页码 125-135

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2004.02.018

关键词

hyaluronic acid; polyethylene glycol; protein release; hydrogel; tissue engineering

向作者/读者索取更多资源

The goal of this work was to utilize the naturally derived bioactive polymer hyaluronic acid (HA) to create a combination tissue engineering scaffold and protein delivery device. HA is a non-immunogenic, non-adhesive glycosaminoglycan that plays significant roles in several cellular processes, including angiogenesis and the regulation of inflammation. In previous work, we created photopolymerizable glycidyl methacrylate-hyaluronic acid (GMHA) hydrogels that had controlled degradation rates, were cytocompatible, and were able to be modified with peptide moieties. In the present studies, we characterized the release of a model protein, bovine serum albumin (BSA), from GMHA and GMHA-polyethylene glycol (PEG) hydrogels. Although BSA could be released rapidly (>60% within 6h) from 1% GMHA hydrogels, we found that increasing either the GMHA or the PEG concentrations could lengthen the duration of protein delivery. Preliminary size exclusion chromatography studies indicated that the released BSA was almost entirely in its native monomeric form. Lastly, protein release was extended to several weeks by suspending BSA-poly(lactic-co-glycolic acid) microspheres within the hydrogel bulk. These initial studies indicate that the naturally derived biopolymer HA can be employed to design novel photopolymerizable composites that are suitable for delivering stable proteins from scaffolding in tissue engineering applications. (C) 2004 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据