4.5 Article

Photorefractoriness in mammals: Dissociating a seasonal timer from the circadian-based photoperiod response

期刊

ENDOCRINOLOGY
卷 146, 期 9, 页码 3782-3790

出版社

OXFORD UNIV PRESS INC
DOI: 10.1210/en.2005-0132

关键词

-

向作者/读者索取更多资源

In seasonal animals, prolonged exposure to constant photoperiod induces photorefractoriness, causing spontaneous reversion in physiology to that of the previous photoperiodic state. This study tested the hypothesis that the onset of photorefractoriness is correlated with a change in circadian expression of clock genes in the suprachiasmatic nucleus (circadian pacemaker) and the pars tuberalis (PT, a melatonin target tissue). Soay sheep were exposed to summer photoperiod (16-h light) for either 6 or 30 wk to produce a photostimulated and photorefractory physiology, and seasonal changes were tracked by measuring the long-term prolactin cycles. Animals were killed at 4-h intervals throughout 24 h. Contrary to the hypothesis, the 24-h rhythmic expression of clock genes (Rev-erb alpha, Per1, Per2, Bmal1, Cry1) in the suprachiasmatic nucleus and PT reflected the ambient photoperiod/melatonin signal and not the changing physiology. Contrastingly, the PT expression of alpha-glycoprotein hormone subunit (alpha GSU) and beta TSH declined in photorefractory animals toward a short day-like endocrinology. We conclude that the generation of long-term endocrine cycles depends on the interaction between a circadian-based, melatonin-dependent timer that drives the initial photoperiodic response and a non-circadian-based timer that drives circannual rhythmicity in long-lived species. Under constant photoperiod the two timers can dissociate, leading to the apparent refractory state.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据