4.7 Article

Direct numerical simulation of polymer-induced drag reduction in turbulent boundary layer flow

期刊

PHYSICS OF FLUIDS
卷 17, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.1829751

关键词

-

向作者/读者索取更多资源

We describe a method for direct numerical simulation of polymer-induced friction drag reduction in turbulent boundary layers. The effect of the polymer additives that induce spatial variations of skin-friction drag is included in the momentum equation through a continuum constitutive model for the viscoelastic stress, which is based on the evolution of a parameter describing the fluid microstructure. We demonstrate that the turbulence structure and polymer microstructure evolve asynchronously as one moves in the streamwise direction. We observe an initial development length, which is followed by a quasisteady region where variations in drag reduction are weak. High drag reduction behavior can be present at short downstream distances from the inflow plane. (C) 2005 American Institute of Physics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据