4.5 Article

Dynamic reorganization of the astrocyte actin cytoskeleton elicited by cAMP and PACAP: a role for phosphatidyllnositol 3-kinase inhibition

期刊

EUROPEAN JOURNAL OF NEUROSCIENCE
卷 21, 期 1, 页码 26-32

出版社

WILEY
DOI: 10.1111/j.1460-9568.2004.03845.x

关键词

astrocyte; G protein-coupled receptor; PACAP; PI3-K; rat; stress fibres

向作者/读者索取更多资源

Cyclic AMP (cAMP)-raising agents induce astrocytes grown in vitro to adopt a stellate morphology resembling their in vivo appearance, through the depolymerization of actomyosin stress fibres. The signalling pathways responsible for cAMP-induced astrocyte stellation have thus far remained largely elusive. We showed in this study that the neurotrophic peptide PACAP (pituitary adenylate cyclase-activating polypeptide) mimicked the effect of forskolin, a direct activator of adenylate cyclase, on the actin cytoskeleton of primary rat astrocytes. The depolymerization of stress fibres induced by PACAP or forskolin was prevented by the expression of a constitutively active mutant of RhoA, but not by a protein kinase A (PKA) blocker, indicating that cAMP-raising agents act upstream of RhoA, in a PKA-independent manner. In addition, PACAP and forskolin inhibited basal Akt phosphorylation, and basal and epidermal growth factor (EGF)-stimulated phosphatidylinositol 3-kinase (PI 3-K) activities. Incubation with a PI 3-K blocker resulted in the depolymerization of stress fibres. This effect was blocked by the expression of a constitutively active mutant of RhoA, indicating that PI 3-K inhibition acted upstream of RhoA. Together, these data demonstrate for the first time that depolymerization of stress fibres, and the resulting astrocyte stellation, induced by stimulation of cAMP production involves the inhibition of the PI 3-K-RhoA pathway.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据