4.7 Article

Vascular smooth muscle cells on polyelectrolyte multilayers: Hydrophobicity-directed adhesion and growth

期刊

BIOMACROMOLECULES
卷 6, 期 1, 页码 161-167

出版社

AMER CHEMICAL SOC
DOI: 10.1021/bm0497015

关键词

-

向作者/读者索取更多资源

Polyelectrolyte multilayer films were employed to support attachment of cultured rat aortic smooth muscle A7r5 cells. Like smooth muscle cells in vivo, cultured A7r5 cells are capable of converting between a nonmotile contractile phenotype and a motile synthetic phenotype. Polyelectrolyte films were designed to examine the effect of surface charge and hydrophobicity on cell adhesion, morphology, and motility. The hydrophobic nature and surface charge of different polyelectrolyte films significantly affected A7r5 cell attachment and spreading. In general, hydrophobic polyelectrolyte film surfaces, regardless of formal charge, were found to be more cytophilic than hydrophilic surfaces. On the most hydrophobic surfaces, the A7r5 cells adhered, spread, and exhibited little indication of motility, whereas on the most hydrophilic surfaces, the cells adhered poorly if at all and when present on the surface displayed characteristics of being highly motile. The two surfaces that minimized cell adhesion consisted of two varieties of a diblock copolymer containing hydrophilic poly(ethylene oxide) and a copolymer bearing a zwitterionic group AEDAPS, (3[2-(acrylamido)-ethyldimethyl ammonio] propane sulfonate). Increasing the proportion of AEDAPS in the copolymer decreased the adhesion of cells to the surface. Cells presented with micropatterns of cytophilic and cytophobic surfaces generated by polymer-on-polymer stamping displayed a surface-dependent cytoskeletal organization and a dramatic preference for adhesion to, and spreading on, the cytophilic surface, demonstrating the utility of polyelectrolyte films in manipulating smooth muscle cell adhesion and behavior.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据