4.5 Article Proceedings Paper

Astrocyte glycogen metabolism is required for neural activity during aglycemia or intense stimulation in mouse white matter

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 79, 期 1-2, 页码 74-80

出版社

WILEY-BLACKWELL
DOI: 10.1002/jnr.20335

关键词

glycogen; glucose; energy metabolism

向作者/读者索取更多资源

We tested the hypothesis that inhibiting glycogen degradation accelerates compound action potential (CAP) failure in mouse optic nerve (MON) during aglycemia or high-intensity stimulation. Axon function was assessed as the evoked CAP, and glycogen content was measured biochemically. lsofagomine, a novel inhibitor of central nervous system (CNS) glycogen phosphorylase, significantly increased glycogen content under normoglycemic conditions. When MONs were bathed in artificial cerebrospinal fluid (aCSF) containing 10 mM glucose, the CAP failed 16 min after exposure to glucose-free aCSF. MONs bathed in aCSF plus isofagomine displayed accelerated CAP failure on glucose removal. Similar results were obtained in MONs bathed in 30 mM glucose, which increased baseline glycogen concentration. The ability of isofagomine to increase glycogen content thus was not translated into delayed CAP failure. This is likely due to the inability of the tissue to metabolize glycogen in the presence of isofagomine, highlighting the importance of glycogen in sustaining neural function during aglycemia. The hypothesis that glycogen breakdown supports intense neural activity was tested by blocking glycogen breakdown during periods of high-frequency stimulation. The CAP area declined more rapidly when glycogen metabolism was inhibited by isofagomine, explicitly showing an important physiological role for glycogen metabolism during neural activity. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据