4.2 Article

Different gvpC length variants are transcribed within single filaments of the cyanobacterium Planktothrix rubescens

期刊

MICROBIOLOGY-SGM
卷 151, 期 -, 页码 59-67

出版社

SOC GENERAL MICROBIOLOGY
DOI: 10.1099/mic.0.27402-0

关键词

-

向作者/读者索取更多资源

Transcripts of the gas vesicle genes gvpA and gvpC were detected in single filaments of the cyanobacterium Planktothrix rubescens using reverse transcription and quantitative real-time PCR. Primers were designed to amplify short sequences within gvpA and three length variants of gvpC. With genomic template DNA, and using Sybr Green to monitor product accumulation, similar amplification efficiencies were observed for each of these genes. The relative copy numbers of gvpC length variants in genomic DNA from five Planktothrix gas vesicle genotypes determined by real-time PCR were similar to those indicated by sequencing the gas vesicle gene clusters. The precipitation of gyp cDNA reverse-transcribed from cellular RNA from single filaments was required before amplification of the gene fragments; without this step it was not possible to detect the accumulation of the expected amplicons by dissociation analysis. Precipitation was also necessary to ensure the generation of product curves that allowed linear regression in an early stage of PCR, a prerequisite for the quantification of low-input cDNA amounts without the need for standard curves. This report shows that different gvpC length variants are transcribed within single Planktothrix filaments, both from laboratory cultures and from natural samples taken from Lake Zurich. This has implications for the efficiency of buoyancy provision by the possible production of gas vesicles of different strengths within individual cyanobacterial filaments. The hypothesis that post-transcriptional regulation may influence the type of protein (GvpC) present in gas vesicles is presented.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据