4.6 Article Proceedings Paper

Millimeter-wave CMOS design

期刊

IEEE JOURNAL OF SOLID-STATE CIRCUITS
卷 40, 期 1, 页码 144-155

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/JSSC.2004.837251

关键词

CMOS millimeter-wave integrated circuits; coplanar waveguides; f(max); integrated circuit modeling; high-speed integrated circuits; millimeter-wave amplifiers; Q-factor; transmission lines; wideband amplifiers

向作者/读者索取更多资源

This paper describes the design and modeling of CMOS transistors, integrated passives, and circuit blocks at millimeter-wave (mm-wave) frequencies. The effects of parasitics on the high-frequency performance of 130-nm CMOS transistors are investigated, and a peak f(max) of 135 GHz has been achieved with optimal device layout. The inductive quality factor (Q(L)) is proposed as a more representative metric for transmission lines, and for a standard CMOS back-end process, coplanar waveguide (CPW) lines are determined to possess a higher Q(L) than microstrip lines. Techniques for accurate modeling of active and passive components at mm-wave frequencies are presented. The proposed methodology was used to design two wideband mm-wave CMOS amplifiers operating at 40 GHz and 60 GHz. The 40-GHz amplifier achieves a peak \S-21\ = 19 dB, output P-1dB = -0.9 dBm, IIP3 = -7.4 dBm, and consumes 24 mA from a 1.5-V supply. The 60-GHz amplifier achieves a peak \S-21\ = 12 dB, Output P-1dB = +2.0 dBm, NF = 8.8 dB, and consumes 36 mA from a 1.5-V supply. The amplifiers were fabricated in a standard 130-nm 6-metal layer bulk-CMOS process, demonstrating that complex mm-wave circuits are possible in today's mainstream CMOS technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据