4.5 Article Proceedings Paper

Nitric oxide from inflammatory-activated glia synergizes with hypoxia to induce neuronal death

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 79, 期 1-2, 页码 208-215

出版社

WILEY
DOI: 10.1002/jnr.20285

关键词

cytochrome oxidase; glutamate; microglia; inflammation

向作者/读者索取更多资源

Inflammatory-activated glia are seen in numerous central nervous system (CNS) pathologies and can kill nearby neurons through the release of cytotoxic mediators. Glia, when activated, can express the inducible isoform of nitric oxide synthase (NOS) producing high levels of nitric oxide (NO), which can kill neurons in certain conditions. We show, however, that inflammatory activation of glia in a mature culture of cerebellar granule neurons and glia causes little or no neuronal death under normal (21%) oxygen conditions. Similarly, hypoxia (2% oxygen) or low levels of an NO donor (100 muM DETA/NO) caused little or no neuronal death in nonactivated cultures. If inflammatory activation of glia or addition of NO donor was combined with hypoxia, however, extensive neuronal death occurred. Death in both cases was prevented by the N-methyl-D-aspartate (NMDA) receptor blocker MK-801, implying that death was mediated by the glutamate receptor. Low levels of NO were found to increase the apparent Km of cellular oxygen consumption for oxygen, probably due to NO-induced inhibition of mitochondrial respiration, in competition with oxygen, at cytochrome oxidase. Necrotic death, induced by hypoxia plus DETA/NO, was increased further by deoxyglucose, an inhibitor of glycolysis, suggesting that necrosis was mediated by energy depletion. Hypoxia was found to be a potent stimulator of microglia proliferation, but this proliferation was not significant in inflammatory-activated cultures. These results suggest that low levels of NO can induce neuronal death under hypoxic conditions, mediated by glutamate after NO inhibition of respiration in competition with oxygen. Brain inflammation can thus sensitize to hypoxia-induced death, which may be important in pathologies such as stroke, neurodegeneration, and brain aging. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据