4.5 Article

Na+-induced inward rectification in the two-pore domain K+ channel, TASK-2

期刊

AMERICAN JOURNAL OF PHYSIOLOGY-RENAL PHYSIOLOGY
卷 288, 期 1, 页码 F162-F169

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/ajprenal.00248.2004

关键词

intracellular sodium; voltage dependent; pore block

向作者/读者索取更多资源

TASK-2 is a member of the two-pore domain K+ (K-2P) channel family that is expressed at high levels in several epithelia, including the proximal tubule. In common with the other TASK channels, TASK-2 is sensitive to changes in extracellular pH. We have expressed human TASK-2 in Chinese hamster ovary cells and studied whole cell and single-channel activity by patch clamp. The open probability of K2P channels is generally independent of voltage, yielding linear current-voltage (I-V) curves. Despite these properties, we found that these channels showed distinct inward rectification immediately on the establishment of whole cell clamp, which became progressively less pronounced with time. This rectification was due to intracellular Na+ but was unaffected by polyamines or Mg2+ (agents that cause rectification in Kir channels). Rectification was concentration- and voltage-dependent and could be reversibly induced by switching between Na+-rich and Na+-free bath solutions. In excised inside-out patches, Na+ reduced the amplitude of single-channel currents, indicative of rapid block and unblock of the pore. Mutations in the selectivity filter abolished Na+-induced rectification, suggesting that Na+ binds within the selectivity filter in wild-type channels. This sensitivity to intracellular Na+ may be an additional potential regulatory mechanism of TASK-2 channels.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据