4.6 Article Proceedings Paper

Stability limits of cavity-stabilized flames in supersonic flow

期刊

PROCEEDINGS OF THE COMBUSTION INSTITUTE
卷 30, 期 -, 页码 2825-2833

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.proci.2004.08.185

关键词

supersonic combustion; flameholders; cavity flow; blowout; flame stability

向作者/读者索取更多资源

Experiments were performed to examine the stability of hydrocarbon-fueled flames in cavity flameholders in supersonic airflows. Methane and ethylene were burned in two different cavity configurations having aft walls ramped at 22.5 degrees and 90 degrees. Air stagnation temperatures were 590 K at Mach 2 and 640 K at Mach 3. Lean blowout limits showed dependence on the air mass flowrates, cavity geometry, fuel injection scheme, Mach number, and fuel type. Large differences were noted between cavity floor and cavity ramp injection schemes. Visual observations, planar laser-induced fluorescence of nitric oxide, and shadowgraph imaging were used to investigate these phenomena. Cavity ramp injection provided better performance near the lean blowout limit, whereas injection from the cavity floor resulted in more stable flames near the rich limit. Ethylene flames have a wider range of stable operations than methane in all conditions. Lean blowout limits were not significantly different between the Mach 2 and Mach 3 cases at the lean limit; however, variation in Mach number had a measurable effect near the rich limit. Fuel flowrates at ignition were much greater than the lean blowout limit, but showed similar dependence on air mass flowrate. (c) 2004 The Combustion Institute. Published by Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据