4.5 Article

Alkylation of cytochrome c by (glutathion-S-yl)-1,4-benzoquinone and iodoacetamide demonstrates compound-dependent site specificity

期刊

CHEMICAL RESEARCH IN TOXICOLOGY
卷 18, 期 1, 页码 41-50

出版社

AMER CHEMICAL SOC
DOI: 10.1021/tx049873n

关键词

-

资金

  1. NIEHS NIH HHS [ES06694, ES10056, ES07784, ES07091] Funding Source: Medline
  2. NIGMS NIH HHS [GM39338] Funding Source: Medline
  3. NATIONAL INSTITUTE OF ENVIRONMENTAL HEALTH SCIENCES [P30ES006694, P30ES007784, R01ES010056] Funding Source: NIH RePORTER
  4. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM039338, R29GM039338] Funding Source: NIH RePORTER

向作者/读者索取更多资源

The reaction of cytochrome c with the electrophilic compounds (glutathion-S-yl)-1,4-benzoquinone (GSBQ) and iodoacetamide was studied using mass spectrometry. GSBQ is a nephrotoxic quinol-thioether metabolite of benzoquinone, while iodoacetamide is an alkylating agent targeting cysteine thiols. Both chemicals formed covalent adducts with cytochrome c. GSBQ formed adducts with cytochrome c at pH 6 on several histidine and lysine residues. At a pH > 7, the initial product rearranged to a disubstituted cyclic quinone species preferentially found at two sites on the protein, Lys25-Lys27 and Lys86-Lys87, via quinol amine linkages. These two sites were previously determined to be the targets of benzoquinone adduct formation [Person et al. (2003) Chem. Res. Toxicol. 16, 598-608]. Cyclic reaction products are preferentially formed at two sites on the protein because of the presence of multiple basic residues in a conformationally flexible region whereas noncyclic products bind to a broad spectrum of available lysine and histidine nucleophiles. Iodoacetamide was a less selective alkylating agent able to form adducts on the majority of the nucleophilic sites of the protein. MS/MS spectra were used to identify signature ions for GSBQ-adducted peptides from the characteristic fragmentation patterns. Neutral losses of the 129 Da gamma-glutamate residue and of the 273 Da glutathione moiety were found in both cysteine thiol- and lysine amine-linked GSBQ adduct MS/MS. Characteristic fragment ions were used in conjunction with the scoring algorithm for spectral analysis to search for adducted species present at low levels in the sample, and the analysis is applicable generally to detection of glutathione conjugates by MS/MS. Parallel analysis using matrix-assisted laser desorption/ionization-MS to compare spectra of control and treated samples allowed identification of peptide adducts formed by direct addition of GSBQ and by the subsequent loss of the glutathione moiety in a pH-dependent cyclization reaction.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据