4.5 Article Proceedings Paper

Nerve growth factor and acetyl-L-carnitine evoked shifts in acetyl-CoA and cholinergic SN56 cell vulnerability to neurotoxic inputs

期刊

JOURNAL OF NEUROSCIENCE RESEARCH
卷 79, 期 1-2, 页码 185-192

出版社

WILEY
DOI: 10.1002/jnr.20276

关键词

acetylcholine; cholinergic phenotype; amyloid-beta; neurotoxicity

向作者/读者索取更多资源

Different groups of brain cholinergic neurons display variable susceptibility to similar neurotoxic inputs. The aim of this work was to find out whether changes in cholinergic phenotype may alter the availability of acetyl-CoA in mitochondrial compartment and thereby the viability of cholinergic neurons. Cyclic AMP (cAMP) and retinoic acid caused differentiation (DC) of T17 TrkA(+) cholinergic neuroblastoma cells. In addition, it increased the choline acetyltransferase (ChAT) activity, Ca2+ accumulation and cytoplasmic acetyl-CoA level, but decreased mitochondrial acetyl-CoA and cell resistance to amyloid-beta(25-35) (Abeta) toxicity. Nerve growth factor (NGF) caused similar alterations in the nondifferentiated cells (NC). On the other hand, in DC NGF suppressed ChAT activity and elevated mitochondrial level of acetyl-CoA but also caused a further increase of Ca2+ content and cell susceptibility to Abeta. The significant inverse correlation was found between ChAT activity and mitochondrial levels of acetyl-CoA. Abeta markedly reduced the expression of cholinergic phenotype, acetyl-CoA content, and viability of DC. These effects were absent or much less pronounced in NC. Acetyl-L-carnitine reversed suppressing effects of Abeta on acetyl-CoA levels and ChAT activity but did not reverse increased mortality in DC. Presented data indicate that increased transmitter activity in highly differentiated cholinergic neurons, decreased acetyl-CoA level in their mitochondrial compartment, and increased Ca2+ accumulation can make them more prone to neurotoxic conditions. Phenotype-dependent changes in intracellular distribution of acetyl-CoA thus play an important role in regulation of viability and transmitter function in brain cholinergic neurons. (C) 2004 Wiley-Liss, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据