4.5 Review

RNA interference-based gene silencing in mice: The development of a novel therapeutical strategy

期刊

CURRENT PHARMACEUTICAL DESIGN
卷 11, 期 26, 页码 3405-3419

出版社

BENTHAM SCIENCE PUBL LTD
DOI: 10.2174/138161205774370834

关键词

-

向作者/读者索取更多资源

RNAi (RNA interference) was originally detected in Caenorhabditis elegans as biological response to exogenous double-stranded RNA (dsRNA), which induces very effective sequence-specific silencing of gene expression. Further investigations revealed that RNAi can occur in many eukaryotic species. Increasing understanding of the biochemical components of RNAi indicates the existence of a conserved machinery for dsRNA-induced gene silencing that acts in two steps. In the first step, an RNase III family nuclease called Dicer processes the dsRNA to small interfering RNAs (siRNAs) 21-23 nt in length. These siRNAs enter a multimeric nuclease complex that identities target mRNAs through their homology to siRNAs and induce destruction of the corresponding mRNAs. Since RNAi has become an excellent strategy for gene silencing, it is tempting to apply this technology to 'knock-down' gene expression in living animals. The generation of transgenic mice from embryonic stem cells expressing small hairpin RNAs (shRNAs) has provided evidence for in vivo application of RNAi. Furthermore, different experimental strategies have been developed to analyze the influence of chemically synthesized siRNAs and of vector-based shRNAs on the expression of different transgenes and endogenous genes in vivo. Recent studies describe the in vivo delivery of siRNAs to inhibit transgene expression in certain organs of adult mice, predominately murine liver. Strategies for the inhibition of cellular proliferation by systemic treatment of tumor-bearing animals with siRNAs are beginning to emerge. They are of utmost interest for systemic diseases such as cancer. In addition, several groups have shown that RNAi can also be used to block the infectivity or suppress the replication of different RNA viruses relevant to human diseases including human immunodeficiency virus-1 (HIV-1) and hepatitis C virus (HCV). In summary, multiple lines of evidence indicate that RNAi seems to become a powerful toot for the fight against undesirable gene expression in human diseases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据