4.4 Review

High power ultrasonics in pyrometallurgy: Current status and recent development

期刊

ISIJ INTERNATIONAL
卷 45, 期 12, 页码 1765-1782

出版社

IRON STEEL INST JAPAN KEIDANREN KAIKAN
DOI: 10.2355/isijinternational.45.1765

关键词

pyrometallurgy; high temperature; sonoprocessing; high power ultrasonics; non-linear phenomena; air pollutants; continuous casting; melt atomization; cast composites

向作者/读者索取更多资源

In recent years, a large number of studies have been published on the use of high intensity ultrasonics in various high temperature technologies. This paper provides an overview of the recent achievements and ongoing works on the application of high intensity sound waves to pyrometallurgy and its related areas. The published results have strongly suggested that ultrasonics has the potential to play a more significant role in such areas as the deducting of high-temperature exhaust gas, improvement of fuel-combustion efficiency, control of air-pollutant emissions, improvement of the quality of ingots, production of metal powders and ascast composite materials. At higher temperatures, special attractiveness of sound waves is associated with the fact that the waves can propagate through gas, liquids, and solids, and thus supply the acoustic energy from a cooled sonic generator to materials being processed under high temperature conditions. This provides a unique tool, for example, for controlling the rates of interfacial phenomena that is unachievable by any other methods under high temperatures. Industrial competitiveness of the ultrasonic-based technologies is reinforced by the relatively low cost of power-generating equipment and ultrasonic transducers. However, further research efforts are called for to develop new heat-resistant waveguide materials and to integrate the ultrasonic installations with existing industrial facilities in high temperature technologies.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据