4.2 Review

Hybrid intercalative nanocomposites

期刊

INORGANIC MATERIALS
卷 41, 期 -, 页码 S47-S74

出版社

MAIK NAUKA/INTERPERIODICA/SPRINGER
DOI: 10.1007/s10789-005-0318-3

关键词

-

向作者/读者索取更多资源

This review focuses on organic-inorganic hybrid nanocomposites, a research area that has made rapid progress in recent years. Inorganic components (hosts) include both natural materials (clays, silicates, smectites, layered phosphates, and others) and compounds prepared by different synthetic techniques. Into their interlayer spaces, various organic guests-sol vents, monomers, and polymers-can be intercalated. Among the hybrid nanocomposites analyzed in detail are those based on polyconjugated electrically conducting polymers, such as poly(aniline) and poly(pyrrole), and various mineral matrices. Particular attention is paid to polymer-metal chalcogenide nanocomposites and their applications as semiconducting materials. One of the most common and practically important intracrystalline processes in the fabrication of hybrid nanocomposites is the incorporation of monomer molecules into pores of the host, followed by controlled internal transformations into polymer, oligomer, or hybrid-sandwich products (in situ postintercalative transformations). This approach is often called ship-in-the-bottle polymerization. Another widely used approach is the incorporation of macromolecules into layered host lattices from solutions or melts. This process offers the possibility of producing graphite intercalation compounds and inorganic-organic multilayer composites, including self-assembled nanocomposites in the form of (P/M)(n) multilayers, where M and P are oppositely charged inorganic and polymer nanolayers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据