4.5 Article

Epstein-Barr virus vector-mediated gene transfer into human B cells: potential for antitumor vaccination

期刊

GENE THERAPY
卷 13, 期 2, 页码 150-162

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/sj.gt.3302602

关键词

EBV-vector; GM-CSF; gene transfer; B cells; B-CLL

向作者/读者索取更多资源

The efficient gene transfer of immunostimulatory cytokines into autologous tumor cells or the transfer of tumor-associated antigens into professional antigen-presenting cells is a prerequisite for many immunotherapeutic approaches. In particular with B cells, the efficiency of gene uptake is one of the limiting factors in cell-based vaccine strategies, since normal and malignant human B cells are commonly refractory to transducing gene vectors. Due to its natural tropism for human B cells, Epstein-Barr virus (EBV), a human herpes virus, might be an option, which we wanted to explore. EBV efficiently infects human B cells and establishes a latent infection, while the viral genome is maintained extrachromosomally. Although these characteristics are attractive, EBV is an oncogenic virus. Here, we present a novel EBV-derived vector, which lacks three EBV genes including two viral oncogenes and an essential lytic gene, and encodes granulocyte-macrophage colony-stimulating factor (GM-CSF) as a cytokine of therapeutic interest. We could show that EBV vectors efficiently transduce different B-cell lines, primary resting B cells, and tumor cells of B-cell lineage. Vector-derived GM-CSF was expressed in sufficient amounts to support the maturation of dendritic cells and their presentation of model antigens to cognate T-cell clones in autologous settings and an allogeneic, HLA-matched assay. We conclude that the EBV vector system might offer an option for ex vivo manipulation of B cells and gene therapy of B-cell lymphomas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据