4.6 Article

Virtual leader approach to coordinated control of multiple mobile agents with asymmetric interactions

期刊

PHYSICA D-NONLINEAR PHENOMENA
卷 213, 期 1, 页码 51-65

出版社

ELSEVIER
DOI: 10.1016/j.physd.2005.10.012

关键词

coordination; collective dynamic behavior; cooperative control; flocking motion; multi-agent systems; networked systems; swarm intelligence; virtual leader

向作者/读者索取更多资源

This paper considers the collective dynamics of a group of mobile autonomous agents moving in Euclidean space with a virtual leader. We introduce a set of coordination control laws that enable the group to generate the desired stable flocking motion. The control laws are a combination of attractive/repulsive and alignment forces, and the control law acting on each agent relies on the state information of its flockmates and the external reference signal (or virtual leader). Using the control laws, all agent velocities asymptotically approach the desired velocity, collisions can be avoided between the agents, and the final tight formation minimizes all agent global potentials. Moreover, we show that the velocity of the center of mass either is equal to the desired velocity or exponentially converges to it. Furthermore, when the velocity damping is taken into account, we can appropriately modify the control laws to generate the same stable flocking motion. Subsequently, for the case where not all agents know the desired common velocity, we show that the desired flocking motion can still be guaranteed. Numerical simulations are worked out to illustrate our theoretical results. Additionally, we consider the effect of white noise on the collective dynamics of the group, and demonstrate numerically that the desired flocking motion can be kept for weak noise and, as the noise intensity increases, the flocking motion can be destroyed. (c) 2005 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据