4.5 Article

Dynamic evolution of selenocysteine utilization in bacteria: a balance between selenoprotein loss and evolution of selenocysteine from redox active cysteine residues

期刊

GENOME BIOLOGY
卷 7, 期 10, 页码 -

出版社

BMC
DOI: 10.1186/gb-2006-7-10-r94

关键词

-

资金

  1. NATIONAL INSTITUTE OF GENERAL MEDICAL SCIENCES [R01GM061603] Funding Source: NIH RePORTER
  2. NIGMS NIH HHS [R01 GM061603, GM061603] Funding Source: Medline

向作者/读者索取更多资源

Background: Selenocysteine (Sec) is co-translationally inserted into protein in response to UGA codons. It occurs in oxidoreductase active sites and often is catalytically superior to cysteine (Cys). However, Sec is used very selectively in proteins and organisms. The wide distribution of Sec and its restricted use have not been explained. Results: We conducted comparative genomics and phylogenetic analyses to examine dynamics of Sec decoding in bacteria at both selenium utilization trait and selenoproteome levels. These searches revealed that 21.5% of sequenced bacteria utilize Sec, their selenoproteomes have 1 to 31 selenoproteins, and selenoprotein-rich organisms are mostly Deltaproteobacteria or Firmicutes/Clostridia. Evolutionary histories of selenoproteins suggest that Cys-to-Sec replacement is a general trend for most selenoproteins. In contrast, only a small number of Sec-to-Cys replacements were detected, and these were mostly restricted to formate dehydrogenase and selenophosphate synthetase families. In addition, specific selenoprotein gene losses were observed in many sister genomes. Thus, the Sec/Cys replacements were mostly unidirectional, and increased utilization of Sec by existing protein families was counterbalanced by loss of selenoprotein genes or entire selenoproteomes. Lateral transfers of the Sec trait were an additional factor, and we describe the first example of selenoprotein gene transfer between archaea and bacteria. Finally, oxygen requirement and optimal growth temperature were identified as environmental factors that correlate with changes in Sec utilization. Conclusion: Our data reveal a dynamic balance between selenoprotein origin and loss, and may account for the discrepancy between catalytic advantages provided by Sec and the observed low number of selenoprotein families and Sec-utilizing organisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据