4.7 Article

High-performance flow-focusing geometry for spontaneous generation of monodispersed droplets

向作者/读者索取更多资源

A high-performance flow-focusing geometry for spontaneous generation of monodispersed droplets is demonstrated. In this geometry, a two-phase flow is forced through a circular orifice integrated inside a silicon-based microchannel. The orifice with its cusp-like edge exerts a ring of maximized stress around the flow and ensures controlled breakup of droplets for a wide range of flow rates, forming highly periodic and reproducible dispersions. The droplet generation can be remarkably rapid, exceeding 10(4) s(-1) for water-in-oil droplets and reaching 10(3) s(-1) for oil-in-water droplets, being largely controlled by flow rate of the continuous phase. The droplet diameter and generation frequency are compared against a quasi-equilibrium model based on the critical Capillary number. The droplets are obtained despite the low Capillary number, below the critical value identified by the ratio of viscosities between the two phases and simple shear-flow.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据