4.5 Article

Molecular interactions of exogenous chemical agents with collagen - implications for tissue optical clearing

期刊

JOURNAL OF BIOMEDICAL OPTICS
卷 11, 期 1, 页码 -

出版社

SPIE-SOC PHOTO-OPTICAL INSTRUMENTATION ENGINEERS
DOI: 10.1117/1.2166381

关键词

collagen; sugar alcohols; light scattering; dermatology; multiphoton microscopy; ultrastructure

向作者/读者索取更多资源

Reduction of optical scattering in turbid biological tissues using nonreactive chemical agents has potential applications for light-based diagnostics and therapeutics. Optical clearing effects by exogenous chemical agents, in particular sugars and sugar alcohols, have been found to be temporary with tissue rehydration. Applications with dermatologic laser therapies are now being investigated, but suffer from the inability of studied agents to penetrate the superficial layers of human skin. Selection, design, and refinement of topically effective chemical agents are hindered by a lack of fundamental understanding of tissue clearing mechanisms. We present recent work, particularly from the biochemistry community, detailing molecular interactions between chemical agents and collagen. This body of work demonstrates the perturbative effects of sugars and sugar alcohols on collagen high-order structures at micro- and nanometer length scales by screening noncovalent bonding forces. In addition, these studies emphasize the nonreactive nature of agent-collagen interactions and the ability of noncovalent bonding forces to recover with agent removal and drive reassembly of destabilized collagen structures. A mechanism of tissue optical clearing is proposed based on agent destabilization of high-order collagen structures. (c) 2006 Society of Photo-Optical Instrumentation Engineers.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据