4.8 Article

Oncolytic Vaccinia Virus Disrupts Tumor-Associated Vasculature in Humans

期刊

CANCER RESEARCH
卷 73, 期 4, 页码 1265-1275

出版社

AMER ASSOC CANCER RESEARCH
DOI: 10.1158/0008-5472.CAN-12-2687

关键词

-

类别

资金

  1. Terry Fox Foundation
  2. Canadian Institute for Health Research (CIHR)
  3. Mitacs Elevate Fellowship
  4. Vanier Scholarship
  5. Ontario Institute for Cancer Research

向作者/读者索取更多资源

Efforts to selectively target and disrupt established tumor vasculature have largely failed to date. We hypothesized that a vaccinia virus engineered to target cells with activation of the ras/MAPK signaling pathway (JX-594) could specifically infect and express transgenes (hGM-CSF, beta-galactosidase) in tumor-associated vascular endothelial cells in humans. Efficient replication and transgene expression in normal human endothelial cells in vitro required either VEGF or FGF-2 stimulation. Intravenous infusion in mice resulted in virus replication in tumor-associated endothelial cells, disruption of tumor blood flow, and hypoxia within 48 hours; massive tumor necrosis ensued within 5 days. Normal vessels were not affected. In patients treated with intravenous JX-594 in a phase I clinical trial, we showed dose-dependent endothelial cell infection and transgene expression in tumor biopsies of diverse histologies. Finally, patients with advanced hepatocellular carcinoma, a hypervascular and VEGF-rich tumor type, were treated with JX-594 on phase II clinical trials. JX-594 treatment caused disruption of tumor perfusion as early as 5 days in both VEGF receptor inhibitor-naive and -refractory patients. Toxicities to normal blood vessels or to wound healing were not evident clinically or on MRI scans. This platform technology opens up the possibility of multifunctional engineered vaccinia products that selectively target and infect tumor-associated endothelial cells, as well as cancer cells, resulting in transgene expression, vasculature disruption, and tumor destruction in humans systemically. Cancer Res; 73(4); 1265-75. (C) 2012 AACR.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据